AYOUB FATIHI AND ANINDITA SAMSU - INSTITUTE OF EARTH SCIENCES, UNIVERSITY OF LAUSANNE, 1015 LAUSANNE, SWITZERLAND

ayoub.fatihi@unil.ch

 Natural fractures can create permeable fluid pathways that are important for geoenergy applications such as CO₂ sequestration and geothermal projects [1].

- Drone and LiDAR-based acquisition methods produce high-resolution 2D data, suitable for detailed fracture mapping [2].
- Manual and semi-automated fracture mapping is time-consuming and susceptible to interpreter bias [3].

Can we use deep learning (Convolutional Neural Networks) to automate 2D fracture mapping for quick and accurate results?

Automatic: No manual intervention required;
Accurate: Results closely match real fractures and unaffected by interpreter bias.

✓ Automatic

Power-law Exponent (Traces) = -2.387

x GT OG1 3

---- Exponentia

--- Cut-Off

ETHODS

MODELS:

All based on convolutions

- U-Net [4]
- DeepLabV3+ [5]
- PAN [6]

Post-processing

- a.Thin
- b.Smooth
- c.Vectorize

Results

- The model generates more segments, with some being very short (noise)
- The model's trace length distribution has a lower cut-off value
- Rose diagrams have similar directional pattern
- (a) Portion of the test dataset (OG1) [3]
- (b) Manual mapping (geologists' interpretations):
 Ground truth [7] and its respective fracture
 trace length distribution and rose diagram
 created using fractopo [8]
- (c) Automated mapping: Predictions of the PAN model and its respective fracture trace length distribution and rose diagram [8]

100 101 102 180° n = 3

